
Explaining “Large-Scale Distributed Second-Order
Optimization Using Kronecker-Factored Approximate
Curvature for Deep Convolutional Neural Networks”

Robin M. Schmidt
Department of Computer Science
Eberhard-Karls-University Tübingen

Tübingen, Germany
rob.schmidt@student.uni-tuebingen.de

November 4, 2019

Seminar Winter 2019/2020
Advanced Topics in Computer Graphics and Computer Vision

Explaining “Large-Scale Distributed Second-Order
Optimization Using Kronecker-Factored Approximate
Curvature for Deep Convolutional Neural Networks”

Robin M. Schmidt
Department of Computer Science

Eberhard-Karls-University Tübingen
Tübingen, Germany

rob.schmidt@student.uni-tuebingen.de

Abstract

Parallelized approaches for optimization algorithms
have validation accuracy drawbacks introduced by
the increasing effective mini-batch size over multiple
processes. To overcome this issue [OTU+18] intro-
duces a parallelized K-FAC algorithm which is able
to achieve highly competitive validation accuracies
for ResNet-50 on ImageNet even with large mini-
batch sizes. In this paper we want to summarize
the main approach and give a little more insight.

1 Introduction

With recent advances in machine learning the size
of training data and the size of deep neural net-
work models is heavily increasing which raises de-
mand for better performing optimization algorithms.
Common approaches are either improving the com-
putational steps of the optimization algorithms or
introducing parallel computing to speed up conver-
gence. Using a fixed mini-batch size for each process
in parallel computing causes the mini-batch size of
the overall system to linearly scale with the num-
ber of processes. As the mini-batch size increases
past a threshold the validation accuracy decreases
[SLA+18]. Other works tried to overcome this by
varying the learning rate and batch size over epochs.
Now, [OTU+18] tries to tackle this large mini-batch
problem with taking a more mathematically rigorous
approach where they assume that large mini-batches
become more statistically stable which introduces
advantages for second-order optimization methods.

2 Notation

We use the same notation as described in [Zha19]
this alternates the notation from [OTU+18] a little

to give more insights. In our notation the train-
ing data T = {(x1,y1) , (x2,y2) , · · · , (xn,yn)} con-
sists of n feature-label pairs. Here, each xi ∈ Rdx is
the feature vector and yi ∈ Rdy is the label vector
with their respective sizes dx and dy. The deep learn-
ing model is described as a mapping F (·;θ) : X → Y
from the feature space X to the label space Y where
θ are the parameters of the model. This leaves us
with a model notation which when presented with
an input instance xi ∈ X yields a predicted output
denoted as ŷi = F (xi;θ). The difference of the
true label yi ∈ Y to this predicted label ŷi is then
described as the loss term ` (ŷi,yi) which can have
different definitions based on the specific problem
(e.g. Mean Squared Error, Hinge Loss, Cross En-
tropy Loss, etc.). By summing up over all data
points in the training data we get the total loss
term defined as:

L(θ; T) =
∑

(xi,yi)∈T

` (ŷi,yi) (1)

During training we try to optimize the model param-
eters θ ∈ Rdθ , which are part of the variable domain
Θ, by minimizing the total loss on the training set.
This can be described as:

min
θ∈Θ
L(θ; T) (2)

For this process of finding a global or local minimum
for convex and non-convex loss surfaces, a variety
of different optimization algorithms are available.
Most of these algorithms use the learning rate η to
determine the step sizes taken for the parameters
θ at each update step τ in the opposite direction
of the gradient of the loss function ∇θL(θ(τ−1); ·).
Here, θ(τ) are the parameters of the model at the
update step τ with τ ≥ 1.

1

3 Related Work

Related Work in the realm of Deep Learning Opti-
mizers can broadly be classified in improvements on
First- and Second-Order Optimization Algorithms.
Here, we want to give a quick overview over these
areas.

3.1 First-Order Optimization Algorithms

There are various First-Order Optimization Algo-
rithms which are widely used in Deep Learning.
One of the most popular choices due to its sim-
plicity is still Stochastic Gradient Descent (SGD)
[RM51] with its update rule shown in Equation 3:

θ(τ) = θ(τ−1) − η · ∇θL
(
θ(τ−1); (xi,yi)

)
(3)

However, there have been recent advances yield-
ing new and improved First-Order Optimiz-
ers such as Adam [KB14], AdamW [LH17],
AMSGrad [RKK19], AdaBound [LXLS19], AMS-
Bound [LXLS19], RAdam [LJH+19], LookAhead
[ZLHB19], Ranger and many more which offer time-
convergence improvements based on Adaptive Gra-
dient methods and Momentum Terms. For a more
detailed description please see [Rud16, Zha19].

3.2 Second-Order Optimization Algorithms

The generalized Gauss-Newton-Method [Sch02] and
Natural Gradient Descent (NGD) [Ama98] set the
groundwork for improvements on Second-Order
Optimization Algorithms [KBH19, Mar14, DHH19,
BRB17, PB13]. Such work yielded the Kronecker-
factored Approximate Curvature (K-FAC) [MG15]
which effeciently approximates the empirical Fisher
information matrix (FIM) Fθ given by Equation 4
through block-diagonalization and Kronecker fac-
torization of these blocks (see Appendix A).

Fθ = E
p(x,y)

[
∇ log p(y|x;θ)∇ log p(y|x;θ)T

]
(4)

For a neural network with L Layers K-FAC approx-
imates Fθ as displayed in Equation 5 with F` being
the block matrix for the FIM of the ` th layer:

Fθ ≈ diag (F1,F2, . . . ,F`, . . .FL) (5)

Each block is then approximated using the
Kronecker-factorization:

F` ≈ G` ⊗A`−1 (6)

With the properties of the Kronecker-factorization
we can write the blocks as:

G(τ−1)
` =

(
G

(τ−1)
`

−1
⊗A

(τ−1)
`−1

−1)
(7)

Now using the NGD update rule we get the update

rule for the parameters θ
(τ)
` :

θ
(τ)
` = θ

(τ−1)
` − η · G(τ−1)

` · ∇L`
(
θ

(τ−1)
` ; ·

)
(8)

Besides the problem of inverting infeasible large
matrices such as the FIM or the Hessian, which K-
FAC tries to solve, a common drawback for Second-
order optimizers is the complexity to optimize them
for distributed computing. This is where [OTU+18]
tries to contribute a method which will improve the
state-of-the-art.

4 Parallelized K-FAC

The design which gets proposed in [OTU+18] is
visualised in figure 1. Each stage corresponds to
a needed step of computation, here representative
with 2 GPUs and a 3 layer neural network. In the
first two stages A`−1 and G` get computed by for-
ward and backward passing the input through the
network. For that, each process uses different mini-
batches to calculate the Kronecker factors. After
that, the values of these factors get summed up
to calculate the global factors and the results get
distributed to the different processes (ReduceScat-
terV) to keep model-parallelism. The purpose of
distributing the results to each process is so that
every GPU can compute the preconditioned gra-
dient G` for a different layer `. If there are more
layers than processes then one process computes
multiple preconditioned gradients as shown in Stage
3 of figure 1. Stage 4 and Stage 5 are respectively
the inverse computation stage and the matrix multi-
plication stage needed for equation 7. After stage 5
we distribute each G` to each process (AllGatherV)
to reach stage 6 where each process can now update
the parameters θ by using the preconditioned gra-
dients. In [OTU+18] they also use some methods
to speed up communication, use damping [MG15]
for the FIM to make training more stable as well as
learning rate schedules and momentum for K-FAC
to speed up convergence. These methods are not
explicitly explained here since they are not the main
contribution of this work and have been applied in
other settings as well.

2

Figure 1: Different stages of distributed K-FAC [OTU+18]

5 Results

All of the presented results are taken from
[OTU+18] which obtained them by training ResNet-
50 [HZRS15] for ImageNet [DDS+09]. According to
figure 2 their results show that the optimal amount
of GPUs to use for their experimental setup is 64.
After that, the overhead for communication becomes
too large which causes a sharp increase in iteration
cost. They are able to achieve a really competi-

Figure 2: Time per iteration of K-FAC on ResNet-50
using different amount of GPUs [OTU+18]

tive validation accuracy of ≥ 75% using really large
batch sizes (BS) which none other first-order opti-
mization method is able to sustain. The respective
training curves with their learning rates and batch
sizes are shown in figure 3. If we compare the batch
sizes for other first-order based methods on the
same problem set we can see that the high valida-
tion accuracies (∼ 76%) achieved by those methods
commonly use batch sizes ≤ 32K [OTU+18].

6 Conclusion & Outlook

Generally, with the obtained results [OTU+18] was
able to show that parallelized second-order opti-
mization algorithms do in fact generalize relatively

Figure 3: Validation accuracy and learning rate
schedules on ResNet-50 [OTU+18]

similar to SGD approaches even for large mini-batch
sizes. This is a result which is new in its entirety
since first-order methods are thought of as having a
large edge over second-order alternatives. However,
their approach can still be improved by improving
the communication complexity as well as approxi-
mating the Kronecker-factors without loss of accu-
racy. For further improvements they mention that
each speed-up method for SGD which they applied
to their approach improved convergence similar to
the effect it has on SGD. This property opens up
the field for further improvements on second-order
optimization algorithms by the possibility of fur-
ther applying already known speed-up techniques
for first-order methods.

3

References

[Ama98] Shun-Ichi Amari. Natural gradient
works efficiently in learning. Neural com-
putation, 10(2):251–276, February 1998.

[BRB17] Aleksandar Botev, Hippolyt Ritter, and
David Barber. Practical gauss-newton
optimisation for deep learning, 2017.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-
Jia Li, Kai Li, and Fei Fei Li. Imagenet:
a large-scale hierarchical image database.
pages 248–255, 06 2009.

[DHH19] Felix Dangel, Philipp Hennig, and Stefan
Harmeling. Modular block-diagonal cur-
vature approximations for feedforward
architectures, 2019.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual
learning for image recognition. CoRR,
abs/1512.03385, 2015.

[KB14] Diederik Kingma and Jimmy Ba. Adam:
A method for stochastic optimization.
International Conference on Learning
Representations, 12 2014.

[KBH19] Frederik Kunstner, Lukas Balles, and
Philipp Hennig. Limitations of the em-
pirical fisher approximation. 2019.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Ge-
offrey E Hinton. Imagenet classification
with deep convolutional neural networks.
In F. Pereira, C. J. C. Burges, L. Bot-
tou, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing
Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[LH17] Ilya Loshchilov and Frank Hutter. Fix-
ing weight decay regularization in adam,
2017.

[LJH+19] Liyuan Liu, Haoming Jiang, Pengcheng
He, Weizhu Chen, Xiaodong Liu, Jian-
feng Gao, and Jiawei Han. On the vari-
ance of the adaptive learning rate and
beyond, 2019.

[LXLS19] Liangchen Luo, Yuanhao Xiong, Yan
Liu, and Xu Sun. Adaptive gradient
methods with dynamic bound of learn-
ing rate, 2019.

[Mar14] James Martens. New insights and
perspectives on the natural gradient
method, 2014.

[MG15] James Martens and Roger Grosse. Opti-
mizing neural networks with kronecker-
factored approximate curvature, 2015.

[Osa18] Kazuki Osawa. Introducing k-fac: A
second-order optimization method for
large-scale deep learning, 2018.

[OTU+18] Kazuki Osawa, Yohei Tsuji, Yuichiro
Ueno, Akira Naruse, Rio Yokota, and
Satoshi Matsuoka. Large-scale dis-
tributed second-order optimization us-
ing kronecker-factored approximate cur-
vature for deep convolutional neural net-
works, 2018.

[PB13] Razvan Pascanu and Yoshua Bengio. Re-
visiting natural gradient for deep net-
works, 2013.

[RKK19] Sashank J. Reddi, Satyen Kale, and San-
jiv Kumar. On the convergence of adam
and beyond, 2019.

[RM51] Herbert Robbins and Sutton Monro. A
stochastic approximation method. Ann.
Math. Statist., 22(3):400–407, 09 1951.

[Rud16] Sebastian Ruder. An overview of gra-
dient descent optimization algorithms,
2016.

[Sch02] Nicol Schraudolph. Fast curvature
matrix-vector products for second-order
gradient descent. Neural computation,
14:1723–38, 08 2002.

[SLA+18] Christopher J. Shallue, Jaehoon Lee,
Joseph M. Antognini, Jascha Sohl-
Dickstein, Roy Frostig, and George E.
Dahl. Measuring the effects of data
parallelism on neural network training.
CoRR, abs/1811.03600, 2018.

4

[Zha19] Jiawei Zhang. Gradient descent based
optimization algorithms for deep learn-
ing models training, 2019.

[ZLHB19] Michael R. Zhang, James Lucas, Geof-
frey Hinton, and Jimmy Ba. Lookahead
optimizer: k steps forward, 1 step back,
2019.

Appendices
A FIM Approximation and Kronecker-product

This chapter fulfills the purpose to give a more intu-
itive and visual approach to the FIM approximation
as well as the Kronecker-product.

Figure 4 shows the Approximation of the FIM
used in K-FAC. This shows that the FIM gets block-
diagonalized with F` being the block matrix for
the FIM of layer `. In particular, the FIM of each
layer consists of the weights for that specific layer.
Each block gets then further approximated using
the Kronecker-factorization.

The Kronecker-factorization is visually shown in
figure 5. When we assume a white space corresponds
to 0, a black space corresponds to 1 and a grey space
corresponds to any other value between 0 and 1 the
resulting matrix has the shape of multiplying the
dimenstions of the two Kronecker-factors. This can
basically be thought of as arranging the product of
matrix B with each cell of matrix A in a new matrix.
Because matrix A has white diagonal elements the
resulting matrix also has white block-diagonal ele-
ments. Black elements in matrix A result in matrix
B being put in that position while grey elements
yield new alternated entries.

If we now take a look at the approximation pro-
cess for AlexNet [KSH12] in figure 6 which is a
common architecture for image classification we
can see the degree of computational improvement
this approach offers. AlexNet has 60, 000, 000 pa-
rameters which yields a Fisher information matrix
with shape Fθ ∈ R60,000,000×60,000,000 which needs
to be inverted in order to make one iteration in
updating the parameters when using the NGD up-
date rule. If we now take a look at the last block-
approximated diagonal block which corresponds to
the last AlexNet layer, we observe that it has the
shape F` ∈ R4,096,000×4,096,000 which can further

be approximated by two smaller matrices where
A`−1 ∈ R4,096×4,096 is the input to layer ` and
G` ∈ R1,000×1,000 is the output of layer `. The
fact that we don’t need to invert those enormous
matrices but these rather small matrices show how
much computational improvement this approach ac-
tually offers. Using this approximation for the FIM
is the main property which distinguishes K-FAC
from NGD and without it K-FAC wouldn’t perform
much different from regular NGD.

5

Figure 4: Approximation of the FIM in K-FAC alternated from: [Osa18]

Figure 5: Kronecker Factorization visually explained: [Osa18]

Figure 6: Approximation Example of the FIM for AlexNet in K-FAC alternated from: [Osa18]

6

	Introduction
	Notation
	Related Work
	First-Order Optimization Algorithms
	Second-Order Optimization Algorithms

	Parallelized K-FAC
	Results
	Conclusion & Outlook
	Appendices
	FIM Approximation and Kronecker-product

