Large-Scale Distributed Second-Order Optimization

Robin Schmidt

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

• **Optimization**: Any branch of ML has optimization problems (RL, Graphics & Vision, DL, etc.)

• **Problem**: Increasing Data sizes \Rightarrow Faster Convergence \Rightarrow Better Optimizers, Parallel computing

• First-Order Optimization Methods: SGD [RM51], Adam [KB14], AdamW [LH17], AMSGrad [RKK19], AdaBound [LXLS19], AMSBound [LXLS19], RAdam [LJH⁺19], LookAhead [ZLHB19]

• Second-Order-Optimization Methods: Gauss-Newton-Method [Sch02], Natural Gradient Descent (NGD) [Ama98], Kronecker-factored Approximate Curvature (K-FAC) [MG15]

• **Problem in Parallel Optimization:** Increasing Mini-Batch Size decreases validation accuracy [SLA⁺18]

Figure: Increasing Mini-Batch size \mathcal{B}_{system} for Parallel Computing

Update Rules Second-Order Optimization and FIM

Fisher Information matrix:

Update Rules Second-Order Optimization and FIM

 $\text{Loss Term:} \qquad \mathcal{L}(\boldsymbol{\theta}; \mathcal{T}) = \sum_{(\mathbf{x}_i, \mathbf{y}_i) \in \mathcal{T}} \ell\left(\hat{\mathbf{y}}_i, \mathbf{y}_i\right) = \sum_{(\mathbf{x}_i, \mathbf{y}_i) \in \mathcal{T}} \ell\left(F\left(\mathbf{x}_i; \boldsymbol{\theta}\right), \mathbf{y}_i\right)$

SGD Update Rule:
$$\boldsymbol{\theta}^{(\tau)} = \boldsymbol{\theta}^{(\tau-1)} - \eta \cdot \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}^{(\tau-1)}; (\mathbf{x}_i, \mathbf{y}_i))$$

NGD Update Rule:

Fisher Information matrix:

•)

$$\text{Loss Term:} \qquad \mathcal{L}(\boldsymbol{\theta}; \mathcal{T}) = \sum_{(\mathbf{x}_i, \mathbf{y}_i) \in \mathcal{T}} \ell\left(\hat{\mathbf{y}}_i, \mathbf{y}_i\right) = \sum_{(\mathbf{x}_i, \mathbf{y}_i) \in \mathcal{T}} \ell\left(F\left(\mathbf{x}_i; \boldsymbol{\theta}\right), \mathbf{y}_i\right)$$

SGD Update Rule:
$$\boldsymbol{\theta}^{(\tau)} = \boldsymbol{\theta}^{(\tau-1)} - \eta \cdot \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}^{(\tau-1)}; (\mathbf{x}_i, \mathbf{y}_i))$$

NGD Update Rule:
$$\boldsymbol{\theta}^{(\tau)} = \boldsymbol{\theta}^{(\tau-1)} - \eta \cdot \mathbf{F}_{\boldsymbol{\theta}}^{-1} \cdot \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}^{(\tau-1)};$$

Fisher Information matrix:

$$\text{Loss Term:} \qquad \mathcal{L}(\boldsymbol{\theta}; \mathcal{T}) = \sum_{(\mathbf{x}_i, \mathbf{y}_i) \in \mathcal{T}} \ell\left(\hat{\mathbf{y}}_i, \mathbf{y}_i\right) = \sum_{(\mathbf{x}_i, \mathbf{y}_i) \in \mathcal{T}} \ell\left(F\left(\mathbf{x}_i; \boldsymbol{\theta}\right), \mathbf{y}_i\right)$$

SGD Update Rule:
$$\boldsymbol{\theta}^{(\tau)} = \boldsymbol{\theta}^{(\tau-1)} - \eta \cdot \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}^{(\tau-1)}; (\mathbf{x}_i, \mathbf{y}_i))$$

NGD Update Rule:
$$\boldsymbol{\theta}^{(\tau)} = \boldsymbol{\theta}^{(\tau-1)} - \eta \cdot \mathbf{F}_{\boldsymbol{\theta}}^{-1} \cdot \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}^{(\tau-1)}; \cdot)$$

Fisher Information matrix:

$$\mathbf{F}_{oldsymbol{ heta}} = \mathop{\mathbb{E}}\limits_{p(\mathbf{x},\mathbf{y})} ig[
abla \log p(\mathbf{y}|\mathbf{x};oldsymbol{ heta})
abla \log p(\mathbf{y}|\mathbf{x};oldsymbol{ heta})^T ig]$$

NGD Update Rule:
$$\boldsymbol{\theta}^{(\tau)} = \boldsymbol{\theta}^{(\tau-1)} - \eta \cdot \mathbf{F}_{\boldsymbol{\theta}}^{-1} \cdot \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}^{(\tau-1)}; \cdot)$$

Fisher Information matrix:

$$\mathbf{F}_{oldsymbol{ heta}} = \mathop{\mathbb{E}}_{p(\mathbf{x},\mathbf{y})} ig[
abla \log p(\mathbf{y}|\mathbf{x};oldsymbol{ heta})
abla \log p(\mathbf{y}|\mathbf{x};oldsymbol{ heta})^T ig]$$

Approximation of the Fisher Information matrix: [MG15, OTU⁺18, Osa18]

¢¢,

Figure: Approximation of the Fisher Information matrix alternated from: [Osa18]

UNIVERSITAT TUBINGEN

Figure: Approximation of the Fisher Information matrix for AlexNet alternated from: [Osa18]

Figure: Comparison of training of ConvNet for CIFAR-10 dataset. Solid line - train, dashed line - validation: [Osa18]

(î)

tübingen

Why is K-FAC a good choice?

It does a good job approximating the FIM and therefore is definitely way more efficient than other second-order techniques

Figure: Proposed Parallelized K-FAC Overview: [OTU+18]

(i))

TUBINGEN

Figure: Accuracy & Learning rate of Parallelized K-FAC with different Batch sizes: [OTU+18]

Figure: Iteration cost of Parallelized K-FAC with different amount of GPUs: [OTU+18]

	Hardware	Software	Mini-batch size	Optimizer	Iteration	Time	Accuracy
Goyal <i>et al</i> . [9]	Tesla P100 \times 256	Caffe2	8,192	SGD	14,076	1 hr	76.3%
You et al. [29]	$KNL \times 2048$	Intel Caffe	32,768	SGD	3,519	20 min	75.4%
Akiba et al. [3]	Tesla P100 \times 1024	Chainer	32,768	RMSprop/SGD	3,519	15 min	74.9%
You et al. [29]	$KNL \times 2048$	Intel Caffe	32,768	SGD	2,503	14 min	74.9%
Jia <i>et al</i> . [15]	Tesla P40 \times 2048	TensorFlow	65,536	SGD	1,800	6.6 min	75.8%
Ying <i>et al.</i> [28]	TPU v3 \times 1024	TensorFlow	32,768	SGD	3,519	2.2 min	76.3%
Mikami et al. [22]	Tesla V100 \times 3456	NNL	55,296	SGD	2,086	2.0 min	75.3%
This work (Sec. 5.4)	Tesla V100 \times 1024	Chainer	32,768	K-FAC	1,760	10 min	74.9%
This work (Sec. 5.3)	-	Chainer	131,072	K-FAC	978	-	75.0%

Figure: Training iterations (time) and top-1 single-crop validation accuracy of ResNet-50 for ImageNet reported by related work: [OTU+18]

- [Ama98] Shun-Ichi Amari. Natural gradient works efficiently in learning. *Neural computation*, 10(2):251–276, February 1998.
 - [KB14] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *International Conference on Learning Representations*, 12 2014.
- [KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, *Advances in Neural Information Processing Systems 25*, pages 1097–1105. Curran Associates, Inc., 2012.
 - [LH17] Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam, 2017.
- [LJH⁺19] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han. On the variance of the adaptive learning rate and beyond, 2019.
- [LXLS19] Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic bound of learning rate, 2019.
 - [MG15] James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate curvature, 2015.

References II

- [Osa18] Kazuki Osawa. Introducing k-fac: A second-order optimization method for large-scale deep learning, 2018.
- [OTU⁺18] Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse, Rio Yokota, and Satoshi Matsuoka. Large-scale distributed second-order optimization using kronecker-factored approximate curvature for deep convolutional neural networks, 2018.
 - [RKK19] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond, 2019.
 - [RM51] Herbert Robbins and Sutton Monro. A stochastic approximation method. *Ann. Math. Statist.*, 22(3):400–407, 09 1951.
 - [Sch02] Nicol Schraudolph. Fast curvature matrix-vector products for second-order gradient descent. Neural computation, 14:1723–38, 08 2002.
- [SLA⁺18] Christopher J. Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and George E. Dahl. Measuring the effects of data parallelism on neural network training, 2018.
- [ZLHB19] Michael R. Zhang, James Lucas, Geoffrey Hinton, and Jimmy Ba. Lookahead optimizer: k steps forward, 1 step back, 2019.