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Motivation and Related Work

• Optimization: Any branch of ML has optimization problems (RL, Graphics & Vision, DL, etc.)

• Problem: Increasing Data sizes⇒ Faster Convergence⇒ Better Optimizers, Parallel computing

• First-Order Optimization Methods: SGD [RM51], Adam [KB14], AdamW [LH17], AMSGrad [RKK19],
AdaBound [LXLS19], AMSBound [LXLS19], RAdam [LJH+19], LookAhead [ZLHB19]

• Second-Order-Optimization Methods: Gauss-Newton-Method [Sch02], Natural Gradient Descent(NGD) [Ama98], Kronecker-factored Approximate Curvature (K-FAC) [MG15]
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Motivation and Related Work: [SLA+18]

• Problem in Parallel Optimization: Increasing Mini-Batch Size decreases validation accuracy[SLA+18]

Figure: Increasing Mini-Batch size Bsystem for Parallel Computing
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Update Rules Second-Order Optimization and FIM

Figure: Introduction to Notation and Update Rules
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Update Rules Second-Order Optimization and FIM

Figure: Introduction to Notation and Update Rules
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Approximation of the Fisher Information matrix: [MG15, OTU+18, Osa18]

Figure: Approximation of the Fisher Information matrix alternated from: [Osa18]
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Approximation of the Fisher Information matrix example: [KSH12, Osa18]

Figure: Approximation of the Fisher Information matrix for AlexNet alternated from: [Osa18]
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Kronecker Product: [MG15]

Figure: Visualized Kronecker Product alternated from: [Osa18]
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Kronecker Product: [MG15]

Figure: Visualized Kronecker Product alternated from: [Osa18]
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Kronecker Product: [MG15]

Figure: Visualized Kronecker Product alternated from: [Osa18]
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Kronecker Product: [MG15]

Figure: Visualized Kronecker Product alternated from: [Osa18]
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K-FAC Comparison: [Osa18]

Figure: Comparison of training of ConvNet for CIFAR-10 dataset. Solid line - train, dashed line - validation: [Osa18]
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Why is K-FAC a good choice?

It does a good job approximating the FIM and therefore is definitely waymore efficient than other second-order techniques



Proposed Parallelized K-FAC Overview: [OTU+18]

Figure: Proposed Parallelized K-FAC Overview: [OTU+18]
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Results: [OTU+18]

Figure: Accuracy & Learning rate of Parallelized K-FAC with different Batch sizes: [OTU+18]
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Results: [OTU+18]

Figure: Iteration cost of Parallelized K-FAC with different amount of GPUs: [OTU+18]
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Results: [OTU+18]

Figure: Training iterations (time) and top-1 single-crop validation accuracy of ResNet-50 for ImageNet reported byrelated work: [OTU+18]
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